

Experimental Evaluation of The Inclined Double Notch Shear Test and Three Other Interlaminar Shear Tests

Kaj Pettersson and Jonas M. Neumeister

Department of Solid Mechanics KTH (Royal Institute of Technology) Stockholm, Sweden

Out-of-plane shear (ILS) = τ_{13} (τ_{23})

Out-of-plane shear (ILS) = τ_{13} (τ_{23})

In-plane shear = τ_{12}

Out-of-plane shear (ILS) = τ_{13} (τ_{23})

In-plane shear = τ_{12}

Material- and engineering-parameters such as G_{ij} or ILSS

The IDNS-test fixture

The IDNS-test fixture

• Statically determined loading of the specimen (α)

The IDNS-test fixture

- Statically determined loading of the specimen (α)
- Vertical translation and mutually equal rotation of fixture halves allowed.

• Homogeneity of the shear strain distribution (DSP)

- Homogeneity of the shear strain distribution (DSP)
- Interlaminar shear strength values (ILSS)

- Homogeneity of the shear strain distribution (DSP)
- Interlaminar shear strength values (ILSS)
- Fraction of shear-separated fracture surface (shear cusps)

Material

- Uniaxial carbon fiber/epoxy with 32 plies of Ciba-Geigy HTA/6376C
- Panel thickness 4.1 mm
- Nominal fiber fraction 65%
- Elastic constants for the panel

Young's moduli [GPa]	Shear moduli [GPa]	Poison's ratios
$E_1 = 140$	$G_{12} = 5.2$	$v_{12} = 0.30, v_{21} = 0.021$
$E_2 = 10.0$	$G_{23} = 3.8$	$v_{23} = 0.50, v_{32} = 0.50$
$E_3 = 10.0$	$G_{13} = 5.2$	$v_{31} = 0.021, v_{13} = 0.30$

• Strongly anisotropic ($E_3/E_1 = 0.07$)

Experimental comparisons - shear strain distributions

Experimental comparisons - shear strain distributions

ILSS-values

Method	Mean τ [MPa]
Iosipescu-0 ^o	65
Iosipescu-90 ^o	83 [*] 114
S3PB	133**
DNC	58
IDNS L/b=1	132
<i>L/b</i> =1.5	114
<i>L/b</i> =2	111

* At the appearance of the first notch root crack.

**Stresses calculated from linear beam theory.

Experimental comparisons - fractography

• Shear separated fracture surface - presence of shear cusps.

Experimental comparisons fractography

• Shear separated fracture surface - presence of shear cusps.

Experimental comparisons fractography

• Shear separated fracture surface - presence of shear cusps.

Method	Area frac- tion [%]
Iosipescu-0 ^o	~50%
Iosipescu-90 ^o	-
First crack	
Iosipescu-90 ⁰	-
Maximum	
S3PB	67 - 72%
DNC	61 - 73%
IDNS	75 - 83%

- Not suitable for ILS-measurements.
- Strongly influenced by material anisotropy.

- Not suitable for ILS-measurements.
- Strongly influenced by material anisotropy.
- Fracture initiated in tension.

- Insensitive to material anisotropy.
- Homogenous shear strain distribution.

- Measures true ILS-properties (*N*/*A*).
- Insensitive to material anisotropy.
- Homogenous shear strain distribution.
- Further development worthwhile.