

Identification of a delay damage mesomodel for localization and rupture of composites: Identification strategy

Pierre Feissel^a Olivier Allix^a

Pascal Thévenet^b

^{*a}LMT, ENS Cachan* with the support of: ^{*b*}EADS-CCR</sup>

Industrial context

■ The Aircraft industry develops composite crash absorbers the tests are still essential (quite costly) → strong will to develop numerical tools

Simulations predict the energy absorption \implies models taking into account :

$\sim \rightarrow$

the nature of the behavior

 \rightarrow the rate effects

[Harding, Coutellier, Baptiste,...]

- → the post-peak behavior
- \rightarrow the fragmentation

 DGA

State law:

 $Y = \frac{E.\varepsilon^2}{2}$

Delay damage mesomodel

[Ladevèze,86] [Deü, Allix,97]

Evolution law:

$$\dot{d} = rac{1}{ au_c} \cdot \left(1 - e^{-a \cdot \langle f(Y) - d \rangle_+}\right)$$

with d = f(Y) the static law

for example: $f(Y) = \frac{\sqrt{Y}}{\sqrt{Y_c}}$

Mesomodel:

Given Good description of the phenomena, identified from standard tests ■ Introduction of a delay effect: to deal with rupture and localization

 \Diamond It is not a classic rate effect

 \diamond Small $\dot{d} \Rightarrow d = f(Y)$, the static law

 \Diamond The damage rate is bounded

$$\dot{d} \in \left[0, \frac{1}{\tau_c}\right]$$

? How to identify the delay parameters?

From tests where rupture occurs:

DGA

- \rightarrow localization phenomenum. \Rightarrow strongly heterogenous tests
- \hookrightarrow strong uncertainties
 - on the boundary conditions

 \rightarrow boundary conditions known by their mean.

(example: structural tests)

→ distance between the measurement points and the specimen's boundary

→ difficulties in tests analysis (rupture in dynamics)

Aim of the work:

to construct a robust identification strategy in this context

? How behave identification methods in the case
of strong scattering of measurements ? \hookrightarrow Study on an example : identification of the Young's modulus of a beam. $\stackrel{\widetilde{u}_d}{\stackrel{f}{f}_d^e}$ $\stackrel{\widetilde{u}_d}{f}_{f}_{d}^e$ $\stackrel{\widetilde{u}_d}{f}_{f}_{d}^e$ $\stackrel{\widetilde{u}_d}{f}_{f}_{d}^s$ $\stackrel{\widetilde{u}_d}{f}_{d}^s$ $\stackrel{\widetilde{u}_d}{f}_{$

the boundary conditions and the material parameters.

■ Inverse approach : two steps.

- \rightsquigarrow
- First step: define a calculation from the experimental datas for a given E
 - \rightarrow Second step: evaluate the quality of E through a functional

of the solution fields of the calculation, and minimize it for identification.

Pierre Feissel

EADS

DGA

DGA

Method proposed by Rota

definition of a distance between the two calculations : $e(u_{CA}(E), u_{SA}(E))$

The identification becomes :

$$\min_{E} C(E) = \min_{E} e(u_{CA}(E), u_{SA}(E))$$

Identification on an example

Remarks on the previous method :

- \Diamond There are multiple ways to split the experimental information.
- \Diamond The experimental measurements are strongly prescribed to the calculations.

Use of the errror in constitutive relation principles inspired by what is done in model updating in vibration. [Ladevèze, Deraemaeker]

Spliting of the quantities into two groups:

Equilibrium: $\rho . \ddot{u} - div\sigma = 0$ Constitutive relation: $\sigma = E.\epsilon$	Reliable		Uncertain	
Magguramanta	Equilibrium:	$ ho$. \ddot{u} – div σ = 0	Constitutive relation:	$\sigma = E.\epsilon$
weasurements: u_d and			Measurements:	\tilde{u}_d and \tilde{f}_d

exactly verified

Ż

DGA

~e

 u_d

 $\tilde{f}_d^{\mathbf{e}}$

Identification process

First step: definition of the basic problem, for a given *E*

~S

 u_d

 $\tilde{f}_d^{\mathbf{s}}$

(confronting the measurements and the model)

solving the mechanics ill-posed problem

Find the fields u, σ, u_d, f_d minimizing:

E?

$$J(\sigma, u, u_d, f_d) = \int_0^T \frac{1}{2} \int_{\Omega} (\sigma - E \cdot \epsilon) \cdot E^{-1} \cdot (\sigma - E \cdot \epsilon) + \int_{\partial \Omega_f} d_f(f_d, \tilde{f}_d) + \int_{\partial \Omega_u} d_u(u_d, \tilde{u}_d)$$

under the constraints:

 $u \operatorname{CA} \grave{a} u_d, \quad \sigma \operatorname{DA} \grave{a} f_d, \quad \rho.\ddot{u} + \operatorname{div} \sigma = 0$

 \hookrightarrow yields the solution fields: $\sigma(E), u(E), u_d(E), f_d(E)$

Second step : identification of *E*

(estimation of the quality of E)

$$\min_{E} g(E) = \min_{E} J(\sigma(E), u(E), u_{d}(E), f_{d}(E))$$

Modified error in constitutive relation

EADS

The functional to be minimized is:

$$J(\sigma, u, u_d, f_d) = \int_0^T \frac{1}{2} \underbrace{\int_\Omega (\sigma - E \cdot \epsilon) \cdot E^{-1} \cdot (\sigma - E \cdot \epsilon)}_{\Omega \circ f} + \underbrace{\int_{\partial \Omega_f} d_f(f_d, \tilde{f}_d)}_{\partial \Omega_f} + \underbrace{\int_{\partial \Omega_u} d_u(u_d, \tilde{u}_d)}_{\partial \Omega_u}$$

error in constitutive relation

distance between the measurements and the boundary conditions

Remark :

If the measurements correspond to the BC for the good Young's modulus, the formulation gives the solution fields of the problem in forces or displacement.

■ One has to:

- \rightarrow Solve the basic problem
- \rightarrow Minimize the cost function to identify *E*.

Solving of the basic problem

EADS

DG A

■ Solution of the basic problem:

 \Diamond the minimization under constraint is solved

by introducing the Lagrangian:

$$L = J(\sigma, u, u_d, f_d) - \int_0^T \left\{ \int_{\partial_u \Omega} \left(u - u_d \right) . \lambda - \int_\Omega \left(\rho . \ddot{u} - div(\sigma) \right) . u^* + \int_{\partial_f \Omega} \left(f_d - \sigma . n \right) . u^* \right\}$$

 \diamond the minimum of J under constraint amounts to the stationnarity of L:

 $\delta L = 0$

 \hookrightarrow the solution must then verify a space-time differential system, with:

- some initial conditions for *u*: $u(0) = u_0$ et $\dot{u}(0) = \dot{u}_0$
- some final conditions for u^* : $u^*(T) = 0$ et $\dot{u}^*(T) = 0$

Need to develop some adapted solving methods

 $\blacksquare \sigma = E.\varepsilon(u + u^*)$ so u^* measures the error in constitutive relation.

■ Continous system on]0, *L*[:

$$\sigma = E. (u, x + u^*, x)$$

$$\rho.\ddot{u} - E.u, xx - E.u^*, xx = 0$$

$$\rho.\ddot{u}^* - E.u^*, xx = 0$$

Boundary conditions:

$$\begin{bmatrix} E.(u,x+u^*,x) - \frac{1}{B}u^* \end{bmatrix}_0^L = \begin{bmatrix} \tilde{f}_d \end{bmatrix}_0^L$$
$$\begin{bmatrix} u - \frac{E}{A}u^*,x \end{bmatrix}_0^L = \begin{bmatrix} \tilde{u}_d \end{bmatrix}_0^L$$

■ Initial and final conditions:

$$u(x,0) = u_0 \text{ and } \dot{u}(x,0) = \dot{u}_0$$

 $u^*(x,T) = u_T^* \text{ and } \dot{u}^*(x,T) = \dot{u}_T^*$

 \rightarrow Finite elements formulation and choice of a temporal scheme Relationship between the nodal unknowns at the step *n* and the step *n* + 1:

$$\begin{bmatrix} U_{n+1} \\ \dot{U}_{n+1} \\ U_{n+1}^* \\ \dot{U}_{n+1}^* \end{bmatrix} = A_n \cdot \begin{bmatrix} U_n \\ \dot{U}_n \\ U_n^* \\ \dot{U}_n^* \end{bmatrix} + B_n \quad \text{with } U_0, \ \dot{U}_0, \ U_{N_t}^*, \ \dot{U}_{N_t}^* \text{ prescribed.}$$
$$\longrightarrow U_0^*, \ \dot{U}_0^* \text{ are needed for an incremental solving}$$

Thanks to the previous relationship, the *IC* can be related to the *FC* :

 \hookrightarrow With these *IC*, a direct calculation can be done and the system is solved.

→ Other (more robust) methods do exist

 $\sim \rightarrow$

This method can be extended to the non-linear case

(iterative method using the gradient of FC/IC)

0

EADS

. DGA

-7

DGA

Identification : gradient's evaluation

Second step: identification of E $\min_{E} g(E) = \min_{E} J(\sigma(E), u(E), u_{d}(E), f_{d}(E)) \Rightarrow \text{ minimization strategy}$ $L(\sigma(E), u(E), u_d(E), f_d(E), u^*(E), \lambda(E), E) = g(E)$ ■ Noting that: one has: $Dg(E).q = \frac{\partial L}{\partial \sigma} \cdot \frac{\partial \sigma}{\partial E} \cdot q + \frac{\partial L}{\partial u} \cdot \frac{\partial u}{\partial E} \cdot q + \frac{\partial L}{\partial u^*} \cdot \frac{\partial u^*}{\partial E} \cdot q + \frac{\partial L}{\partial u_d} \cdot \frac{\partial u_d}{\partial E} \cdot q + \frac{\partial L}{\partial f_d} \cdot \frac{\partial f_d}{\partial E} \cdot q + \frac{\partial L}{\partial E} \cdot q$ = 0since $(\sigma(E), u(E), u_d(E), f_d(E), u^*(E), \lambda(E))$ are the solution fields of the basic problem. 0.07 Computation of the gradient from the 0.06 0.05 solution fields:

$$Dg(E).q = \frac{\partial L}{\partial E}.q$$

Methods comparison

DGA

? Is it working without it?

Formulation without the term of distance to the measurements:

(Experimental boundary conditions strongly prescribed)

■ First step: definition of the basic problem

Find the fields u, σ minimizing:

$$J_{2}(\sigma, u) = \int_{0}^{T} \frac{1}{2} \int_{0}^{L} (\sigma - E.u_{,x}) . E^{-1}. (\sigma - E.u_{,x})$$

under the constraints: $u \operatorname{CA} \grave{a} \tilde{u}_d, \quad \sigma \operatorname{DA} \grave{a} \tilde{f}_d, \quad \rho.\ddot{u} + \operatorname{div} \sigma = 0$

 \hookrightarrow yields the solution fields: $\sigma(E), u(E)$

■ Second step : identification of *E* (estimation of the quality of *E*)

$$\min_{E} g_2(E) = \min_{E} J_2(\sigma(E), u(E))$$

Pierre Feissel

EADS

DGA

-DGA

? Shall we keep it for the identification step?

The choice of the cost function is independent from the basic problem

 \Diamond Basic problem: (with the regularization term)

Trouver les champs u, σ, u_d, f_d minimisant :

$$J(\sigma, u, u_d, f_d) = \int_0^T \frac{1}{2} \int_{\Omega} (\sigma - E \cdot \epsilon) \cdot E^{-1} \cdot (\sigma - E \cdot \epsilon) + \int_{\partial \Omega_f} d_f(f_d, \tilde{f}_d) + \int_{\partial \Omega_u} d_u(u_d, \tilde{u}_d)$$

sous les contraintes:

 $u \operatorname{CA} \grave{a} u_d, \quad \sigma \operatorname{DA} \grave{a} f_d, \quad \rho.\ddot{u} + \operatorname{div} \sigma = 0$

 \hookrightarrow yields the **regularized** solution fields: $\sigma(E)$, u(E), $u_d(E)$, $f_d(E)$

 \Diamond Choice for the cost function :

$$\min_{\boldsymbol{E}} \boldsymbol{g}(\boldsymbol{E}) = \min_{\boldsymbol{E}} \boldsymbol{J}(\boldsymbol{\sigma}(\boldsymbol{E}), \boldsymbol{u}(\boldsymbol{E}), \boldsymbol{u}_{\boldsymbol{d}}(\boldsymbol{E}), \boldsymbol{f}_{\boldsymbol{d}}(\boldsymbol{E}))$$

OR

$$\min_{E} g_{2}(E) = \min_{E} J_{2}(\sigma(E), u(E)) = \min_{E} \int_{0}^{T} \frac{1}{2} \int_{0}^{L} (\sigma - E.u_{,x}) . E^{-1}. (\sigma - E.u_{,x})$$

? Shall we keep it for the identification step?

, DGA

 \hookrightarrow for each realization, the $\frac{1}{2}$ identified for the two cost function:

1^{st} case : weight = 1/magnitude of each term

cost function with	2 terms	1 term
mean	0, 987	0.997
variance	$6, 7.10^{-4}$	$7, 3.10^{-5}$

 2^{d} case : weight/10 for the distance

to the measurements.

(changes the two methods)

cost function with	2 terms	1 term
mean	0, 998	0.999
variance	$1,69.10^{-4}$	9, 34.10 ⁻⁵

Conclusion about the distance to the measurements

EADS

■ In the case of strong scattering of the measurements,

the term of distance is useful to allow identification.

■ The choice of the weight in front of this term depends on the level of perturbation

■ Without information on the level of uncertainties,

the identification step without the term of distance seems robust

Delay effect identification

0.4

DGA

Spliting of the quantities into two new groups:

Reliable		Uncertain	
Equilibrium:	$ ho$. $\ddot{u} - div\sigma = 0$	Evolution law:	$\dot{d} = \frac{1}{\tau_c} \cdot \left(1 - e^{-a \cdot \langle f(Y) - d \rangle_+} \right)$
State law:	$\sigma = E.(1 - d).\epsilon$	Mesurments:	\tilde{u}_d et \tilde{f}_d
	$Y = \frac{E.\epsilon^2}{2}$		

 \hookrightarrow definition of a new basic problem taking this spliting into account.

Find the fields u, σ, d, u_d, f_d minimizing:

$$J(\sigma, u, u_d, f_d) = \int_0^T \int_\Omega \eta_\varphi(\dot{d}, Y; d) + \int_{\partial \Omega_f} d_f(f_d, \tilde{f}_d) + \int_{\partial \Omega_u} d_u(u_d, \tilde{u}_d)$$

under the constraints:

 $u \operatorname{CA} \grave{a} u_d, \quad \sigma \operatorname{DA} \grave{a} f_d, \quad \rho.\ddot{u} + \operatorname{div} \sigma = 0, \quad \sigma = E.(1 - d).\varepsilon$

First results on a 0*D* example are promising:

DGA

■ A first step in order to build a robust identification

method for problems with very imprecise boundary conditions such as those encountered in crash tests

Present work concerns the case of damage with localization

and especially the resolution of the coupled direct-retrograde non-linear wave problem

-> first results are promising

Experiments are currently done by EADS and ENSAM Paris