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Industrial context

� The Aircraft industry develops
composite crash absorbers

the tests are still essential

(quite costly)

↪→ strong will to develop numerical tools

Simulations predict the energy absorption =⇒ models taking into account :

 the nature of the behavior
 the rate effects

[Harding, Coutellier, Baptiste,...]
 the post-peak behavior
 the fragmentation
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Delay damage mesomodel

[Ladevèze,86] [Deü, Allix,97 ]

� State law:

� = E .(1 − d). �

Y =
E . �

2

2

� Evolution law:

ḋ =
1
τc

.
(

1 − e−a.〈f (Y )−d〉+
)

with d = f (Y ) the static law

for example: f (Y ) =

√
Y

√
Yc

� Mesomodel:
↪→ good description of the phenomena, identified from standard tests

� Introduction of a delay effect: to deal with rupture and localization
♦ It is not a classic rate effect
♦ Small ḋ ⇒ d = f (Y ), the static law
♦ The damage rate is bounded

ḋ ∈

[

0,
1
τc

]
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? How to identify the delay parameters?

� From tests where rupture occurs:

↪→ localization phenomenum.
=⇒ strongly heterogenous tests

↪→ strong uncertainties
on the boundary conditions

 boundary conditions known by their mean.
(example: structural tests)

 distance between the measurement points and
the specimen’s boundary

 difficulties in tests analysis (rupture in dynamics)

Aim of the work:
to construct a robust identification strategy in this context

ε

σ

ε

σ

comportement global comportement local

zone de localisation
ailleurs
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Identification framework

? How behave identification methods in the case
of strong scattering of measurements ?

↪→ Study on an example : identification of the Young’s modulus of a beam.

↪→ quantification of the compatibility between
the boundary conditions and the material parameters.

� Inverse approach : two steps.
 First step: define a calculation from the experimental datas for a given E
 Second step: evaluate the quality of E through a functional

of the solution fields of the calculation, and minimize it for identification.

measurements of forces and displacement
at both ends of the beam.

the direct problem is ill-posed
(in most cases, there is no solution)

too much datas
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Method proposed by Rota

� In order to recover a well-posed problem,
some equations have to be released:

↪→ Split into two auxiliary problems [Rota]

Prescribed forcesPrescribed displacements

↪→ yields a solution field: uCA(E) ↪→ yields a solution field: uSA(E)

definition of a distance between the two calculations : e(uCA(E), uSA(E))

� The identification becomes :

min
E

C(E) = min
E

e(uCA(E), uSA(E))
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Identification on an example

↪→ Creation of perturbed mesurements
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Taking into account the uncertainties

Remarks on the previous method :
♦ There are multiple ways to split the experimental information.
♦ The experimental measurements are strongly prescribed to the calculations.

↪→ Use of the errror in constitutive relation principles
inspired by what is done in model updating in vibration.

[Ladevèze, Deraemaeker ]

� Spliting of the quantities into two groups:

Reliable Uncertain

Equilibrium: ρ.ü − divσ = 0 Constitutive relation: σ = E .ε

Measurements: ũd and f̃d

exactly verified verified at best
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Identification process

� First step: definition of the basic problem, for a given E
(confronting the measurements and the model)

solving the mechanics ill-posed problem

� Second step : identification of E (estimation of the quality of E)

min
E

g(E) = min
E

J( � (E), u(E), ud (E), fd (E))

↪→ yields the solution fields: � (E), u(E), ud (E), fd (E)

Find the fields u, � , ud , fd minimizing:

J( � , u, ud , fd ) =

∫ T

0

1
2

∫

Ω
(σ − E .ε) .E−1

. (σ − E .ε) +

∫

∂Ωf

df (fd , f̃d ) +

∫

∂Ωu

du(ud , ũd )

under the constraints:

u CA à ud , � DA à fd , ρ.ü + div � = 0
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Modified error in constitutive relation

� The functional to be minimized is:

J( � , u, ud , fd ) =

∫ T

0

1
2

∫

Ω
(σ − E .ε) .E−1

. (σ − E .ε)

︸ ︷︷ ︸

+

∫

∂Ωf

df (fd , f̃d )

︸ ︷︷ ︸

+

∫

∂Ωu

du(ud , ũd )

︸ ︷︷ ︸

error in constitutive relation distance between the
measurements and the

boundary conditions

� Remark :
If the measurements correspond to the BC for the good Young’s
modulus, the formulation gives the solution fields of the problem
in forces or displacement.

� One has to:
 Solve the basic problem
 Minimize the cost function to identify E .
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Solving of the basic problem

� Solution of the basic problem:
♦ the minimization under constraint is solved

by introducing the Lagrangian:

L = J(σ, u, ud , fd )−
∫ T

0

{∫

∂uΩ
(u − ud ) .λ −

∫

Ω
(ρ.ü − div(σ)) .u∗ +

∫

∂f Ω
(fd − σ.n).u∗

}

♦ the minimum of J under constraint amounts to the stationnarity of L:

δL = 0

↪→ the solution must then verify a space-time differential system, with:

• some initial conditions for u: u(0) = u0 et u̇(0) = u̇0

• some final conditions for u∗: u∗(T ) = 0 et u̇∗(T ) = 0

↪→ Need to develop some adapted solving methods

� � = E. � (u + u∗) so u∗ measures the error in constitutive relation.
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Numerical solving of the differential system

� Continous system on ]0, L[:






σ = E . (u,x +u∗,x )

ρ.ü − E .u,xx −E .u∗,xx = 0

ρ.ü∗ − E .u∗,xx = 0

� Boundary conditions:






[

E .(u,x +u∗,x ) − 1
B u∗

]L

0
=

[

f̃d
]L

0
[

u − E
A u∗,x

]L

0
= [ũd ]L0

� Initial and final conditions:
u(x , 0) = u0 and u̇(x , 0) = u̇0

u∗(x , T ) = u∗
T and u̇∗(x , T ) = u̇∗

T

↪→ Finite elements formulation and choice of a temporal scheme
Relationship between the nodal unknowns at the step n and the step n + 1:










Un+1

U̇n+1

U∗
n+1

U̇∗
n+1










= An.










Un

U̇n

U∗
n

U̇∗
n










+ Bn with U0, U̇0, U∗
Nt

, U̇∗
Nt

prescribed.

↪→ U∗
0 , U̇∗

0 are needed for an
incremental solving
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Numerical solving of the differential system

Thanks to the previous relationship, the IC can be related to the FC :










UNt

U̇Nt

U∗
Nt

U̇∗
Nt










=




M11 M12

M21 M22



 .










U0

U̇0

U∗
0

U̇∗
0










+




T1

T2





=⇒




U∗

0

U̇∗
0



 = M22
−1

.








U∗

Nt

U̇∗
Nt



 − M21.




U0

U̇0



 − T2





↪→ With these IC, a direct calculation can be done and the system is solved.

 Other (more robust) methods do exist
 This method can be extended to the non-linear case

(iterative method using the gradient of FC/IC)
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Solution fields on an example

unperturbed measurements perturbed measurements

E
E0

= 1

E
E0

= 2

u u∗ u u∗
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Identification : gradient’s evaluation
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� Second step: identification of E
min

E
g(E) = min

E
J( � (E), u(E), ud (E), fd (E)) ⇒ minimization strategy

� Noting that: L(σ(E), u(E), ud (E), fd (E), u∗(E), λ(E), E) = g(E)

one has:

Dg(E).q =
∂L
∂σ

.
∂σ

∂E
.q +

∂L
∂u

.
∂u
∂E

.q +
∂L
∂u∗

.
∂u∗

∂E
.q +

∂L
∂ud

.
∂ud
∂E

.q +
∂L
∂fd

.
∂fd
∂E

.q
︸ ︷︷ ︸

+
∂L
∂E

.q

= 0
since (σ(E), u(E), ud (E), fd (E), u∗(E), λ(E))

are the solution fields of the basic problem.

� Computation of the gradient from the
solution fields:

Dg(E).q =
∂L
∂E

.q
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Methods comparison
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Influence of the distance to the measurements

J( � , u, ud , fd ) =

∫ T

0

1

2

∫

Ω

(σ − E.ε) .E−1
. (σ − E.ε)

︸ ︷︷ ︸

+

∫

∂Ωf

df (fd , f̃d )

︸ ︷︷ ︸

+

∫

∂Ωu

du(ud , ũd )

︸ ︷︷ ︸

� It can be seen as a regularization term:

♦ How to choose the weight of this term ?
[Philips-Tikhonov, Deraemaeker ]

↪→ the terms are adimensioned.

♦ Is it working without it?

♦ Shall we keep it for the identification step?
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? Is it working without it?

Formulation without the term of distance to the measurements:

(Experimental boundary conditions strongly prescribed)

� First step: definition of the basic problem

� Second step : identification of E (estimation of the quality of E)

min
E

g2(E) = min
E

J2( � (E), u(E))

Find the fields u, � minimizing:

J2( � , u) =

∫ T

0

1
2

∫ L

0
( � − E .u,x ) .E−1

. ( � − E .u,x )

under the constraints:
u CA à ũd , � DA à f̃d , ρ.ü + div � = 0

↪→ yields the solution fields: � (E), u(E)
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? Is it working without it?
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? Shall we keep it for the identification step?

� The choice of the cost function is independant from the basic problem

♦ Basic problem: (with the regularization term)

↪→ yields the regularized solution fields: � (E), u(E), ud (E), fd (E)

♦ Choice for the cost function :

min
E

g(E) = min
E

J( � (E), u(E), ud (E), fd (E))

OR

min
E

g2(E) = min
E

J2( � (E), u(E)) = min
E

∫ T

0

1
2

∫ L

0
( � − E .u,x ) .E−1

. ( � − E .u,x )

Trouver les champs u, � , ud , fd minimisant :

J( � , u, ud , fd ) =

∫ T

0

1

2

∫

Ω

(σ − E.ε) .E−1
. (σ − E.ε) +

∫

∂Ωf

df (fd , f̃d ) +

∫

∂Ωu

du(ud , ũd )

sous les contraintes:
u CA à ud , � DA à fd , ρ.ü + div � = 0
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? Shall we keep it for the identification step?

Gaussien noise realization
to perturbe the measurements:
(σ0 = 0, 2 . umax or fmax )

↪→ for each realization, the Young’s modulus is
identified for the two cost function:

1st case : weight = 1/magnitude of each term

2d case : weight/10 for the distance
to the measurements.

(changes the two methods)
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Conclusion about the distance to the measurements

� In the case of strong scattering of the measurements,
the term of distance is useful to allow identification.

� The choice of the weight in front of this term depends on the level of perturbation

� Without information on the level of uncertainties,
the identification step without the term of distance seems robust
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Delay effect identification

� Spliting of the quantities into two new groups:

Reliable Uncertain

Equilibrium: ρ.ü − divσ = 0 Evolution law: ḋ = 1
τc

.
(

1 − e−a.〈f (Y )−d〉+
)

State law: σ = E .(1 − d).ε Mesurments: ũd et f̃d

Y = E.ε2

2

↪→ definition of a new basic problem taking this spliting into account.

Find the fields u, � , d, ud , fd minimizing:

J( � , u, ud , fd ) =

∫ T

0

∫

Ω

ηϕ(ḋ, Y ; d) +

∫

∂Ωf

df (fd , f̃d ) +

∫

∂Ωu

du(ud , ũd )

under the constraints:
u CA à ud , � DA à fd , ρ.ü + div � = 0, � = E.(1 − d). �

First results on a 0D example are promising:
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Conclusion and outlook

� A first step in order to build a robust identification
method for problems with very imprecise boundary conditions such as those
encountered in crash tests

� Present work concerns the case of damage with localization
and especially the resolution of the coupled direct-retrograde non-linear wave
problem
-> first results are promising

� Experiments are currently done by EADS and ENSAM Paris


